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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-64

GRAPHICAL TRAJECTORY ANALYSIS

By Aaron S. Boksenbom

SUMMARY

A simple graphical method for two-body trajectory problems is pre-
sented. The one basic graph used is composed simply of circles and
straight lines. All features of trajectories appear on this map.
Coasting trajectories correspond to circles on the graph. The transfer
to new orbits on impulsive thrust, planar and nonplanar, is constructed
on the same map. Approximations for continuous thrust and for cases of
almost circular orbits are shown.

Examples are given for cases of transfer to new orbits, optimization
on the velocity increment AV, interplanetary trips, and some rendezvous
problems.

INTRODUCTION

There is a wide variety of problems in regard to the nature of
orbits and trajectories of space flight ranging, say, from simple coast-
ing paths to the optimization of thrust required for various missions.
The need thus exists for a quick, simple, and practical method of esti-~
mating trajectory conditions and thrust required for many different
types of cases.

The purpose of this rsport is to present a simple graphical method
for trajectory analysis that can be applied to many types of trajectory
problems. The one basic graph used is composed simply of circles and
straight lines. Many trajectory variables of interest appear on this
graph in this rather simple manner. Coasting trajectories correspond to
circles on the graph. The transfer to a new trajectory on impulsive
thrust is constructed on the same mep, almost like rzalistic vector addi-
tions. Nonplanar thrust can be included.

The graphical method of refersnce 1 involves charts that must be
prepared and does not iaclude thrust. The method of reference 2 applies
only for e -+ 0 and is close to the methods of this report for that
case; 1t does not include thrust.




Because many differsnt variables appear in a simple fashion on the
map presented herein, there are a number of ways of entering the map and
many variables that can be read out simultaneously. This feature of the
graphical method allows a large number of Jillerent types of problems to
be analyzed with the same basic graphical construction. Examples in the
use of this graphical method are given in the present report for cases
of transfers to new orbits; optimum velocity increment AV; interplane-

tary, escape, and capture trajectories; and some rendezvous problems.

The simplicity of the graphical method suggests the possible use of
its coordinate system in other types of trajectory analyses, such as in
guidance problems or in general computer programing. The complete set
of differential equations in this particular coordinate system is de-
rived in the appendix.

SYMBOLS

A summary figure illustrating a general condition on any trajectory
and the corresponding point in the X-Y map used for the graphical method
is shown in figure 1(a) with the major symbols used in this report. To
relate the position of the vehicle in space, the conventional three-
dimensional geometry, shown in figure 1(b), is used.

e eccentricity

F thrust

G gravitational constant

g local acceleration due to gravity, g = GM/r2
h angular momentum, h = ¥Vg = r°6
i inclination of plane of motion
K identifies time lines (fig. 16)
M mass of central body

m mass of wvehicle

R radius on X-Y map, R = hv/GM

r radial distance on trajectory

Trg apogee distance

AT~
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L

VR

AV

semilatus rectum

perigee distance

time

time of perigee crossing

velocity

velocity component in horizontal plane

velocity component in radial direction

velocity increment due to thrust, AV = [ % dt

abscissa of map used in graphical method,
X = Wg/@M = bZ/GMr = rp/r

X-1

ordinate of map used in graphical method, ¥ = hVR/GM
path angle

angle swept out by radius vector along trajectory

true anomaly, angle between dlrection of perigee and radius
vector in plane of motion

angle between planes of motion, before and arter ihrust
(fig. 11)

longitude of ascending node

angle between ascending node and direction of perigee in
plane of motion

Unit vectors

H B B

<D

in direction of vector angular momentum
in direction of ascending node
in direction of radius vector

in direction of velocity



>

A A
2¥ )2

Oy K

directions of fixed orthogonal coordinate system

A . . -~ A A . A - -~
normal to r, in plane of motion; 6 = hXr; triad r, 6. h
forms right-~hand orthogonal systenm

Special symbols

()

)

@

) ()
(%)
()

indicates time derivative, 4/dt
indicates vector

indicates unit vector

indicates scalar product
indicates cross product

used for specific conditions as noted in report

ANATYSIS

General Features of Graphical Method

The method consists of plotting trajectories on a graph with the
abscissa X and ordinate Y given by

where

Vg  total veloelty component in horizontal plane (normal to radial
- direction)

VR velocity component in radial direction

h magnitude of angular momentum, h = rVg

r;, magnitude of semilatus rectum, ry = he /GM

This choice of coordinate system for the graph makes the method simple
and easy to apply to a large variety of problems for the following

Ireasons:

6LY-H
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(1) For every point on any trajectory, there is a corresponding
point on the graph. Along any actual trajectory, there is a correspond-
ing curve traced out on the graph.

(2) For any coasting trajectory, the corresponding curve on the
graph is a circle centered at the point X =1, ¥ = 0 of radius equal
to the eccentricity of the trajectory.

(3) Many other trajectory variables are directly and simply related
to the X-Y coordinate system:

(a) Lines of constant e and ¢ form a polar coordinate
system centered at the point X=1, ¥ = O.

(b) Lines of constant hV/GM and vy form another polar co-
ordinate system centered at the point X =0, Y = 0.

(c) The radial distance on the trajectory r 1is related to
the abscissa, as X = hz/GMr.

() Lines of constant rVZ/GM = 2 + 2Er/GM, where E is
energy, are circles with center at X = er/ZGM, Y = 0, all of
which go through the point X =0, ¥ = 0.

(4) For noncoasting trajectories, there is a relatively simple con-
struction on the graph for cases of both impulsive and continuous thrust.

In the appendix, the differential equations for the path in the
X-Y plane are derived in order to show the general nature of the corre-
spondence between any actual trajectory and its corresponding curve on
the graph. For zero thrust, the differential equation is

(X -1)&X+Ydy =0
whose solution is
(X - 1)% + Y? = Constant = 2

The expansion of the left side of this equation shows that the constant
is the square of the eccentricity. The geometry in the X-Y plane for
the eccentricity e 1is shown in figure 2. For easy reference, the
point X =1, ¥ = 0 is referred to herein as point Q, and the origin
X=0,Y =0 as point O.

It is well known that the true anomaly ¢ can be obtained from the
following equation:
h2

O - 1 +ecos o




which can be written (X - l)/e = cos ¢. The true anomaly ¢, corre-

sponding to the X,Y point on the graph, is its angular rotation about
point Q (fig. 2). Thus, the trajectory variables e and ¢ form a

polar coordinate system centered at point Q on the graph, as shown in
figure 3.

From the definition of X and Y it is obvious that
X% + Y2 = (nv/aM)2
and
Y/X = tan y.

Thus, the trajectory variables hV/GM and 7y form another polar co-
ordinate system centered at point O on the graph. In figure 4, the two
polsr coordinate systems are superposed on the graph. This map, and its
construction, is the basis for the methods of this report.

Figure 5 is the same map with the detailed grid lines. All vari-
ables on the map are dimensionless. The unit distance should be chosen
to give good accuracy for the particular problems at hand. It is be-
lieved that many trajectory problems can be sclved with the aild of this
map. Of course, a compass, stralght-edge, scale, and protractor are
sufficient without the aid of the grid guide lines.

Because of the many variables that appear on the map of figures 4
and 5, there are many different ways of entering the graph and many vari-
ables that can be read out simultaneously. This feature of the map means
that a large number of different types of problems can be analyzed with
the same map or construction. In a later section, it is shown that ad-
ditional curves can be placed on the map to allow still more different
ways of entering the graph and more variables that can be read out. One
such family, mentioned previously, are lines of constant rV /GM, which
are circles.

Coasting Tresjectories

For zero thrust, the eccentrlcity is constant. Thus, all coasting
trajectories correspond to circles on the graph. All circular coasting
orbits correspond to point Q. Elliptic coasting orbits (0 < e < 1) cor-
respond to the circles, centered at point Q, of radii from O to 1. The
parabolic coasting orbit (e = 1) corresponds to the unit circle on the
graph. Hyperbolic coasting orbits (e > 1) correspond to circles of radii
greater than 1. These circles do not close; their intersection with the
Y-axis gives the asymptotic conditions as zr —+ .

6L7-H
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As do = d0 for zero thrust (appendix) and the definition of @
requires that de/dt 2 0, motion on the graph corresponding to a coasting
trajectory is always counterclockwise. (onslder the coasting trajectory
in figure 6 with, say, e = 0.5 corresponding to the path on the graph
from points 1 to 2. The angle (1, Q, 2) is 65 - 61, the angle swept

out by the radius vector along the trajectory. As the angular momentum
h 1is also constant, the radial distance on the trajectory is inversely
proportional to X, and r,/r; = X;/X,. Also, it is apparent that the

X axis to the right of point Q is the locus of perigees and to the left
of point Q is the locus of apogees. The radial distance R on the map
to the origin is hV/GM. Thus, the velocity on the trajectory is pro-

portional to R, and V5/Vy = Ry/R;. The path angles on the trajectory

Y1 and Yy appear directly on the graph of figure 6.

As another example, suppose a satellite is to be injected into
orbit with an eccentricity e = 0.25. Then the possible burnout con-
ditions correspond to the circle of e = 0.25 on the graph of figure 7.
If the burnout path angle is also specified, say 10°, then burnout cor-
responds to the intersection on the map of the e = 0.25 circle and the
v = 109 line. Figure 7 shows a double-valued solution for this case,
points 1 and 2. There is obviously a maximum path angle at burnout that
could be specified. If a greater path angle were specified, there would
be no intersection between the e-circle and the y-line in figure 7. In
this example and those in later sections, such impossible cases and
other trajectory ambiguities and singularities are clearly defined by
the use of the X-Y plane.

Tmpulsive Thrust

Plapnar thrust. - The same graph is easily adapted for impulsive
thrusts. On the graph of figure 8, points 1 and 2 correspond to con-
ditions on the trajectory before and after impulsive thrust, respectively.
The vector between these two points is not AV, as the scale factor
h/GM is not necessarily constant. The graphical construction is in two
steps. A vectorlike addition of hlAV/GM to point 1 gives an inter-

mediate point A; that is,
hy hiVeg hihp
X=X +g (Vog - Vam) = " = @w

hy h1Vor
Yp = Y1 + gy (Vog - ViR) = 7




The lines in the triangle (0, 1, A) are exactly like the vector addition .
of AV to Vi, with scale factor hjy/GM; the three vectors appear

on the graph in realistic relation to each other and to the fixvead
unit vectors. as showvm on the sketch in figure 8.

~
o,

B>

Points A and 2 lie on the same Yo line. A simple relation be-
tween points 1, A, and 2 is obtained by noting that XE = X3X5. With

this construction, point 2 can be found, given point 1 and ZV; or AV
can be found, given points 1 and 2. Point 2 on the graph is then the
start of a new coasting path along the circle (e = const.) on which it
lies.

6L%-H

It is helpful to note the relations between going from points 1 to
2 and going from points 2 to 1. For the latter case, the first step is
a vectorlike addition of -(hpAV/GM) to point 2, giving the intermediate
point B; that is,

hp haVig  hibp
X=X - (Vem - Vim) = —Gr =g = %

ho haViRr
Yg = Y2 - = (Ver - Vir) =

Y3 Viy
% " T T T

Points B and 1 1ie on same Y, line. The relation between points 1, B,

and 2 is the same as before, as
Xpg = Xp
that is,
X5 = X1,
The construction for both forward and backward impulsive thrust is

shown in figure 9. The fact that X, = Xg and lines 1A and 2B are

parallel gives a further aid in the graphical construction. For example,
starting at point 1 and adding hlAN/GM give point A and the vy, line.

The intersection of the X, vertical line and the Y1 line gives

point B. Drawing a line through point B, parallel to the line 1A, gives
point 2 as its intersection with the Yo line. This construction would .

obviate the use of the formula XE = X1X,. The exception is the case of
tangential thrust where vy, = Yo and the figure 1AZB lies on a line;
in this case, the formula XE = X1X5 or RE = RyRs can be used.



CC-z

The values of the new orbital elements, after impulsive thrust, are
self-evident. The eccentricity appears on the map. The angular momentum

is given by
hy Xy X, [Xp\1/2

in figures 8 and 9. The rotation of the polar axis of the trajectory is
given by

wp - ®1 =P - ¢z = Angle (2, Q, 1)
in figures 8 and 9.

Direction reversal, planar thrust. - If, in the construction shown
in figure 8, point A should lie to the left of the vertical axis, it
means that the direction of motion has reversed. In this case, the
mirror image of point A is used on the right of the vertical axis to
complete the construction in figure 8. Subsequent coasting is stilil
counterclockwise on the map, but the sense of the change in 9 is re-
versed. Also, given points 1 and 2 on the map, there are two AV's
corresponding to the two mirror images for point A. These two AV's
would give the two types of trajectories sketched in figure 10.

Nonplanar thrust. - If AV is not in the plane of motion, the con-
struction in figure 8 still holds in terms of (VZR - V) and (v2H - Vig)-

While (Vop - Vqg) is still the radial component of AV, the quantity
(VZH - VlH) is not a component of AV. A separate construction is re-

quired to obtain this quantity. This construction is shown below the
map of figure 11. This separate construction is essentially the veloc-
1ty diagram in the horizontal plane. The unit vectors Ql, 62, hl, and

hz are shown to identify directions. The vector line CD represents

the total component of the impulse in the horizontal plane. The vector
line OD represents Vop, in direction 92. The length OD equals Xp

and must be transferred to X-axis as shown in figure 11. The angle ¥
is that between the two planes of motion, before and after thrust. On
the map, the vector line 1E represents the total component of the
impulse in the initial plane of motion.

Direction reversal, nonplanar thrust. -~ If, in the construction
shown in figure 11, the point E should lie to the left of the vertical
axis, it means - as in the case of planar thrust - that the direction
of motion has reversed. In this case, the mirror image of point E is
used on the right of the vertical axis to complete the construction in
figure 11. Subsequent coasting is still counterclockwise on the map,
but the sense of the change in 6 is reversed.
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Now, given points 1 and 2 on the map, XA is uniquely determined by
Xﬁ = XlXZ' On the construction below the map of figure 11, the length
OD equals Xp. Thus, point D can lie anywhere on the circie of 1engt2
Xa arcund point O. ‘nere are thus an infinite number of possible AV's
as the angle between the two planes ¢ varies from 0° to 360°. For

90° < ¥ < 2700, point E lies to the left of the vertical axis corre-
sponding to the direction reversal.

Continuous Thrust

One way of handling a continuous thrust by the graphical procedure
just presented is to approximate the continuous thrust by a series pulse-
coast-pulse-coast-etc. Figure 12 shows the construction of a pulse-
coast and of a coast-pulse beginning at the same point 1. Path 1A23 is
pulse 1A2 and then coast 23. Path 14B5 is coast 14 and then pulse 4BS.

It seems that the pulse-coast-etc. approximation should be made
relative to the time integral of thrust-mass ratio. Figure 13 shows a

F
component of o dt. The approximate pulse-coast curve is the step

function shown in figure 13. For this step function, horizontal parts
are coasts, and vertical steps are the magnitudes of AV pulses. The
abscissa scale may be time or position.

In the appendix, the general exact differential equations for the
path in the X-Y plane are derived. They are:

where g is the local acceleration due to gravity, g = GM/rz. These
equations are valid for general three-dimensional motion. DNote that the
component of thrust normal to the instantaneous plane of motion does not
appear; this component merely rotates the plane of motion. In these
equations, the independent variable is 6, the angle swept out by the
radius vector along the trajectory. Elapsed time, if required, is ob-

tained from
as = )
gS 4 X; 2

) FraalT
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Thus, a gross approximation is obtained as shown in figures 12 and 13,
and an exact form is given by the preceding differential equations.
Further analysis for continuous thrust is beyond the scope of this
report.

Almost Circular Orbits, e—0

It was noted previously that all variables on the map of figures
4 and 5 are dimensionless and that the unit distance should be chosen
to give good accuracy for the particular problem at hand. For the case
of e » 0, an expansion of the map in the region of the point q is
needed. In this region the circles centered at point O are almost
vertical lines, and the rays from point O are almost horizontal lines.
Thus, a single set of polar coordinates suffices; the horizontal scale
gives both r and V, and the vertical scale gives Y.

The approximate map for cases where e » 0 is shown in figure 14.

Tt is convenient to introduce the variables r* and V¥, which essen-

tially replace the scale factor h/GM. These variables are the radial
distance and approximate velocity when ¢ = 90°, a kind of average
conditions.

The construction for impulsive thrust is shown in figure 15. The
vector from point 1 to point A is AN/V{. Point 2 lles to the right of
point A such that =x; + x, = 2xp. Point 2 on the map is then the start
of a new coasting path along the circle (e = const.) on which it lies.

The new scale factors are given by

* # * *
rz - T1 V1-Vz
pomsT o T E Ty
The angle (2,Q,1) in figure 15 is Wy - 1, the rotation of the polar
axis of the orbit. The value of veloclty after thrust is obtained from
* .
2[:(V2 - Vl)/vl] = X5 - x1. The value of path angle after thrust is read

directly from figure 15.

Vertical Flight, h = O

This is the one case where the graphlcal method bresks down. The
scale factor on both axes of figure 5 is h/GM, and, when h = O, the
map degenerates into the point 0. Of course, the case h = 0, which is
vertical flight, is relatively simple for straightforward calculations.
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APPLICATIONS
Additional Curves For Map
kquations for various families of curves. - For certaln problems

it may be convenient to have certain families of curves on the map of
figures 4 and 5. A list of equations for some of these follows:

2s2 ¢ 2M2

(1): g—M—(t-tp)=Const.;f dy 2~_-.GD3/I (t—tp)
nd 0 (1 +ecosy) h
iy X —I'p

. p_ . -
(2): = = Const.; —F— = 3

r T
(3): L Const.; X =&
r 1--e T
2 2 2 [
(4): E%— = Const.; circles with center at %%ﬁ, CD, radius = %%ﬁ’ all
of which go through point (0,0). -

Note that rVZ/GM = 2 + 2Br/GM = 2 - r/a, where E is energy,
V2/2 - GM/r, and a is magnitude of semimajor axis.

b by \a
(5): 2o Const.} X = (—i)
r (ev2/om) - 2 \F

where by is impact parameter of hyperbolic orbits, h = bV(r »=).

For the general condition r = r*, Q= Q*, Y = Y*; and so forth,

*
I'*

* 2
(6): X, y* of interest, as on reentry; X2<:E) sec? v - 2X % + 1 = &2
T r

* *
(7): L, ¢ of interest; - = 1+e cos Q*
T T 1l+ecoso

The only variable that really does not appear on the map of figure
5 is time. Thus, only the first of the preceding families of curves is
necessary. The others may be convenient but, as shown in later examples,
are not strictly necessary.

Time lines. - As just shown, lines of (GMZ2/h3)(t - t,) = K can be

placed on the map of figure 5. Such a family of curves is shown in fig-
ure 16. On this figure, lines of constant K are drawn symmetrically -

Al T=-T
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with respect to the X-axis. Thus, above the X-axis, going from perigee
to apogee, K = (GZMz/hS)(t - tp), which gives time elapsed siace the last
perigee crossing. Below the X-axis, approaching the perigee,

K = (G2M2/h3)(tp - t), whizh gives time to go to the nexi perigee cross-
ing. Along the X-axis, to the right of point Q, K = 0. Along the X-axis

from the points O to Q, K = =n(1 - ez)'3/a, which indicates the half-
reriod.

By using these curves, the time elapsed during any coasting phase
is easily obtained. Figure 17 indicates four conditions along a coasting
path. Considering the definition of the K-lines of figure 16 gives the
following four cases:

GaM2
(l): .h_5 (‘tz - tl) = Ko - Ky
202
M
(2): S (ty - t5) = Kz - K4
n-
N G2M
(3): —— (ty - ty) = Ky + K4
n-
202
. GM
GEMET

Note that K = = n(l - e2)-3/2 where T is period of orbit.

nd2

By using these curves, lhe chauge in tp on impulsive burning is
easily obtained. For example, if points 1 and 2 are points on the map
before and after impulsive thrust, then

a212

3
hl

('t - tp,l) = Kl

G2M2

3
hy

(t - tp,z) = KZ

where both points 1 and 2 ars considered to be above the X-axis. It
follows that

G2ME b3
5 (tp,1 - tp,2) = 3 ek
1 1

}
AN
H3
N’

W\
~
oo
[z%)
1
sl
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or
tp,1 - tp,2 _ (§§ 3/2 Kz 1
t -t \&, &

Transfer To New Orbit

Suppose it is desired to burn at a definite position along orbit 1,
say point la in figure 18, to transfer to a new orbit with parameters

e, ho. Then Xp is determined by Xop/Xi4 = h%/h:zL; the intersection

of this Xz 1line with the ep circle determines point 2a. Point Aa
and the corresponding AV follow as in figure 8.

The angle (22, Q, la) gives w, - wy. For point 1 at various posi-

tions along the e; circle, this rotation of the polar axis will vary.

If, for example, no rotation of the polar axis is desired, then points
Q, 2, and 1 must lie on a straight line. Such a line may be line Q-2b-

1b, which is such that Xpp/X1p = h%/h‘]z_. Point Ab and the required AV
to transfer to orbit with parameters ep, hp, wp = w; follow as in fig-

ure 8. The correct position along orbit 1 at which to burn so as to
keep wy = wy is also obtained.

Optimum AV

Case 1. - Suppose it is desired to burn along orbit 1 at a fixed
position (point 1 of fig. 19) so that the subsequent trajectory has a
fixed perigee. The freedom in the specification of this problem allows
an optimization on AV.

The perigee point of the new orbit lies along the X-axis to the
right of point Q in figure 19. For each such possible perigee point p,
the circle of constant e can be traced backwards to its point 2, which
is determined by XP/XZ = rl/rp’z. The possible points 2 so generated

actually form a curve; this curve is the line of r/rp = constant, which

was mentioned in a previous section. The corresponding points A are
generated as before (fig. 8); they also form a curve. The minimum AV
is the shortest distance from point 1 to the curve of points A. The
optimum path is shown as the solid line in figure 19.

The minimum AV in magnitude and direction is so obtained. In
addition to obtaining the optimum AV, all other possible ways of achiev-
ing the fixed perigee are shown in figure 19.

6L7-d
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Case 2. -~ Suppose it is desired to burn along orbit 1 at a fixed
position (point 1 of Pig. 20) so that the new orbit will pass through
r = r*, T = r*. This is the requirement that a reentry may give. The
new orbit will reach y = * along the line of ¥y =y~ on the map.
For each such possible final point E, the circle of constant e can be
traced backwards to its point 2, which is determined by Xg/Xo = ry/r*.

The corresponding points A are generated as before. The minimum AV
can then be seen by Inspectionj the optimum path is shown in figure 20
as a solid line. This case actually includes case 1 if T = 0.

Case 3. -~ Suppose it is desired to simply change the orbital param-
eters to ep, ho, and the position of burning along orbit 1 can be chosen

so as to minimize AV. Point 1 lies along the circle of ej (fig. 21).
For each such possible point, X, is determined by XZ/Xl = hz/hl' The
intersection of this X,-line and the ep circle determines the corre-

sponding point 2, as shown in figure 21. The points A and AV's are
found as before. The minimum AV 1is seen by inspection.

Additional cases. - There are many possible optimization problems

thal can be posed. For example, among the variables w,h,e; r,p;

] ¥
§?§% = 45 cases. Even this
does not exhaust the possible cases as various functions of these vari-
ables may be considered. It is believed that most of these cases can be
solved graphically by using the map presented in this report. The vari-
able time requires the curves of constant +t - tp as discussed before.

V,v,Vg,VR; t there are of the order of

iterplanetary Trajectories
The usual two-body trajectories are used such that inside the sphere

of influence of a planet the sun's field is neglected and outside this
region the planet's field is neglected. On the boundary of this region,

VCA VA+VhA

where

VC,A velocity of vehicle relative to sun on sphere of influence of
planet A

Va velocity of planet A relative to sun

Vh,A velocity of vehicle relative to planet A on sphere of influence

" of planet A
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The hyperbolic veloeity Vh,A acts like a AV thrust impulse added to
the velocity of the planet.

As an example, take the minimm-energy transfer orbits between
planets A and B, which are in circular orbits around the sun. Figure 22
is the map of figure 5 for this example. Starting at point 1, which
represents the orbit of planet A, Vh,A is added to the planet as if it

were a AV. This increment is added tangentially, as shown. The coast-
ing path around the sun is path 23, where X,/X; = ry/r,. The hyper-

bolic velocity at planet B is negative as shown, corresponding to the
vehicle moving more slowly than planet B. The return trip is similar,
going from points 1 to 3 and coasting from 3 to 2 along the same semi-
circle but below the X-axis, and so forth.

The hyperbolic veloclties VB,A and Vh,B determine the required

AV's in the neighborhood of planets A and B. For example, take the case
of starting in a cilrcular satellite orbit and adding, tangentially, a
AV to reach Vh,A' Figure 23 is the graphical construction for this

case. Points 1 and 2 are points on the map before and after thrust.
Path 23 is the coasting path. The intersection of this circle with the
vertical axis (point 3) gives hyperbolic conditions. For this problem
it is most convenient to use the circles of constant rVZ/GM as noted
before (section "Additional Curves for Map"); or, for 7y, = O,

Xp = TVE/GM = 2 + (xVE ) /aM). This would determine X, and thus the
2

AV required. The angle shown, B, determines the angular direction with
which the vehicle leaves planet A.

Some Rendezvous Problems

Orbit geometry in a plane. - The intersection of two orbits is
defined by
(1): w1 + Py = Wz + P
(2): r| =71y

If, on the map of figure 24, points la and Za are the conditions on

orbits 1 and 2 at their intersection, then the preceding two conditions
beconme

(1): Angle (2a, Q, 1la) = wp - ]
X24, h%

(2): T =3
la h

1

6LY~HE
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The tangency of two orbits requires a third condition:
(5): Ty =72

If, in figure 24, points 1b and 2b are the conditions on orbits 1 and 2
at thelr tangency, then

(1): Angle (2b, Q, 1b) = wy - oy
2
(2). izﬁ—hz
’ X1,  p2
1b hl
(3): Points 0, 1b, and 2b lie on straight line

For the intersection or tangency condition, it would be convenient to

have a drawing instrument (or two-arm protractor) centered at the point
@ with two arms having the fixed included angle ws - wy. Rotation of
both arms until Xz/Xl = hg/hi glves conditlions at the intersection of

two orbits. If, at this condition, points 0, 1, and 2 lie on a straight
line, then the two orbits are also tangent at this point.

Transfer orbit tangent to initial and final orbits. - Consider a
rendezvous maneuver involving two tangential AV's. Initial orbit is
e1s hy, wq; transfer orbit is €55 hoy W53 final orbit is ez, hz, W«

The conditions of tangency (fig. 25) require:

(1): Angle (2a, Q, 1) = wy -
' 2
h
(2)1 —X-Ei:—g
X1 nZ
(3): Points 0, 1, and 2a on straight line
(4): Angle (3, Q, 2b) = w3z - wp
2
X h
(5): -_é_:_é
X2p  nk

(8): Points 0, 2b, and 3 on straight line
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As hp; and wp are not of interest here, these six conditions reduce
to the following four conditions:

(1): Angle (2a, @, 1) + angle (3, Q, Zb) = wz - O]
2
(2): Xpa¥X3 h%
X1 %ep  nf
(3): Points 0, 1, and 2a on straight line
(4): Points O, 2b, and 3 on straight line

Starting with point 1, a point 2a, which satisfies condition (3),
can be tried. This gives angle (3, Q, 2b) by condition (1), and also
X3/X2b by condition (2). Using the two-arm protractor with included

angle fixed at angle (3, Q, 2b), rotate it until points 0, 2b, and 3 lie
on a straight line (condition (4)). Then check to see if Xz/Xpy is

correct. If not, try a different point Z2a, and so forth. When, by such
trial and error, points Za, Zb, and 3 are determined, the AV's are
readily found as shown in figure 25.

Transfer orbit of minimum AV. - The transfer orbit of the previous
section considered only tangential AV's. Suppose the problem is to
transfer from an initial orbit of ej, hy, ®; to a final orbit of ez,

hz, and wz using two AV's such that the total AV is a minimum.
Referring to figure 26, there are two conditions:

(1): Angle (2a, Q, 1) + angle (3, Q, 2b) = wz - wy
2
X1 %20 n2

The solution for minimum AV is a trial and error optimization for
points 1 and 2a. Starting with any point 1 and any point 2a, angle
(3, Q, 2b) is determined by condition (1), and X3/X2b is determined by

condition (2). With the included angle fixed at angle (3, Q, 2b), the two-

arm protractor is rotated until points 2b and 3 satisfy proper X3/X2b,

condition (2). The total AV is obtained as in figure 26 and noted.
Various points 2a are tried until minimum AV is obtained. Then,
starting over with various points 1, optimize with respect to various
points 1.

6LY~H
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CONCLUDING REMARKS

A simple, quick, and practical graphical method for trajectory
analysis, applicable to many different types of problems, has been de-
scribed herein. A summary figure showing the correspondence between
trajectory conditions and the X-Y map used for the graphical construction
is shown in figure 1(a). The upper part of the summary figure shows
point (1) as the instantaneous condition; the orbit shown would be that
for subsequent coasting. The lower part of the figure shows the corre-
sponding point 1 in the X-Y plane. Many trajectory variables appear
rather simply in this plane. The variables e, @ are the polar co-
ordinates around the point Q. The varisbles hV/GM, Y are polar co-
ordinates around the point O. The radial distance on the trajectory r
is related to X. The subsequent coasting orbit, starting at point 1,
is the circle on the map of constant e that goes through the point 1
as shown in figure 1(a). The true anomaly ¢ appears directly on the
map in a realistic manner as shown in figure 1(a). The only variable
that does not appear directly on the map or cannot easily be inferred
from it is time. Figure 16 shows the set of time lines superposed on
the map.

The transfer tc a new orbit on impulsive thrust was constructed on
the same map, almost like realistic vector addition of velocities, both
for planar and nonplanar cases. For continuous thrust, the exact dif-
ferential equations describing the corresponding path of the operating
point in the X-Y plane were derived. Approximations for continuous
thrust in terms of a series pulse-coast-pulse-coast-etc. were shown.
Another approximation for the case of almost circular orbits (e + 0),

which simplified the graphical construction even further, was described.

Because of the many variables that appear on the X-Y map, there are
many dlfferent ways of entering the map and many variables that can be
read out simultaneously. This feature allows & large number of different
types of problems to be analyzed with the same construction. Examples
given in the report range from simple coasting paths to optimization of
AV  for various cases and to several types of rendezvous problems.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Chio, August 11, 1959
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APPENDIX - DERIVATION OF EQUATIONS OF MOTION
IN COORDINATES OF GRAPHICAL METHOD
Basic Kinematics

For any unit vector, say 3, of constant length, g€-8=1.
taking the time derivative of this equation, g - é = O. Thus, for any

. A ~
unit vector, e and e are normal.

Let the plane of the paper of figure 27 be the instantaneous ,V
plane of motion. The vector angular momentum is defined by h=7rXV.
Thus, f 1s normal to the T -V plane‘ A 8 direction 1s defined as

= hx 2. Thus 6 lies inthe T -V plane, normal to r, such that
the triad r, 9, h forms an orthogonal right-hand system.

The magnitude of the angular momentum is obtained from the pre-
ceding definition of h as follows:

h=h-h=h+*(rx7V) =2z -9

The components of the veloclty are obtained from the definition

-
—

V=?‘=;’i‘+1‘§
The vector ¥ thus lies in the r - ¥V plane; as it is also normal to %,

- L)
it must lie in the 6 direction. Thus, T = 06, which also serves as
the definition for 49 (or @), as shown in figure 27. The expression
for velocity becomes

V ?—V:R:.‘E‘ (Al)
— -~ .

The magnitude of angular momentum is
h=1r(V - 8) =1r2 (A2)

The angle 6 1is that angle swept out by the radius vector along
the trajectory. For general nonplanar motion, 6 would be the accumu-
lated angle on the curved surface generated by the radius vector. From
equation (A2), it is evident that 4d6/dt 2 0, so that a6 (or ) can
be used as the independent variable of the motion, replacing the usual
independent variable dt (or +t). The exception is the case of radial
motion on the trajectory, where dg/dt =

6L7-H




21

To get the time derivatives of h, h, and &, b = é% (FTxV) =T x7V,

‘A ——
Er hh + hﬁ =T X V. On taking the scalar product of this equation with
A
h, 8, and T in turn,

.
[

B (FEXT) =2V - 6) (A3)

) =8+ (ExTV) = x(¥ - B)

[np
—~
jag O
.
DY

nhcH=2.(FExT) =0

and, thus,

H - ~
nf = -r(V - b)6 (Ad)
-~
From 6 =h Xr,
§=-6r+1 (T-0)A (a5)
The components of the acceleration are obtained from the tlme de-

rivative of the first of equations (Al).

T = (¥ -r02)% + (r6 +2r6)8 + (V- A (A6)

where it 1s noted that the magnitude of the 6 component 1is ﬁ/r.

Kinematics in X-Y Plane

The X and Y coordinates of the graph used in the methods of
this report can be defined as follows:

v - VE _ nro _ _nf
™ ™ oM

hVg  pp

o M

Differentiation of these equations, using equations (A2), (A3), and
(A6), gives

X _ y.ofT. 8
&= Y+Z(g 9) (A7)

ay V. 5\ (V.2
d’é‘x"'X(g 9>+(8 r) (88)
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where .
e
12
and
dg - oY (A9)
g a6 X
&
The preceding three equations give the path in the X-Y plane with ™
@ as the independent variable or parameter. Elapsed time dt (or t) ©
is given by
1/4
dt - oM (A10)
dae 3/4 ,1/2
g X
L4
Three-Dimensional Kinematics
To relate the position of the vehicle in space, considea t&e con- "
ventional geometry (ref. 3) as shown in figure 1(b), where X, ¥, 2 are
fixed directions. The angle between 2 and B is the inclination“ i.
The unit vector direction # is along the intersection of the ﬁ, y
plane and the ?, 7 plane, that is, the direction of the ascending node.
Analytically,
2 - B = cos 1
zxh=12sini, 0<i<180°
The angles § and w + ¢ are defined by
£ -8 =cos @, 0<@< 360°
A-T=cos (w+9), 0<o + ¢ < 360°
On taking the time derivatives of these four equations, first note
that
A -
h sin i %% = (2 x M)r sin(w + ¢)(V - 1)
Then, the rates of change of w, Q, and i are
. . ad ' . = a
h sin i = (w+ @ - 0) = -r sin(w + ¢)cos i(V - h) .
hsinidQ=rsin(w+o)(V * h)
dat -
di = P
h = = r cos(w + ¢)(V * h)

dt
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On using d9 as the independent variable, the preceding three equations
become

— A
d .
X33 (@ + 9 - 08) = -sin(o + @)cot i (V = h) (A1)
4 ., _ sin(o + 9) v -4
X35 @ sin 1 < g ) (A12)
i v -8
X35 = cos(w + m)( 2 ) (A13)

Complete Set of Differential Equations of Motion

General case. - Equations (A7) to (Al3) are a complete set of dif-
ferential equations for the motion in terms of the variables X, Y¢ g,
t, w + ¢, €, and 1 as functions of 6 with v - ?, V- 5, and V - h
as the inputs. There are seven equations, rather than the usual six,
because the independent varisble 6 1is, in general, merely a parameter
of the motion.

From the definition of X and Y,

2ne Ve M
(X - l)z + Y% =1 +--§—§<%? - -*) = &%
G*M
which is the usual definition of the eccentricity e. Also,
h‘d

X = O = l+ecos @

by the usual definition of the true anomaly ¢. It may be convenient to
have the differential equations for e and . These are:

e %% = Yli(v é ;') + l:l +[1{XE + 2(X - l)](—‘7 é 5) (Al4)
ezd% (p - 8) = (X - l)[(vé;>+l] -Y <l+)—];)(vé§> (A15)

Inverse-square central gravitational field. - All the equations in
this appendix up to this point are quite general; expressions for the

acceleration V and the gravitational field have not yet been specified.
For the case of an inverse-square central gravitational field, the
acceleration 1is

V=Fm-gb
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where F 1is vector thrust and m is mass of vehicle. Then

K3 _ N
V- F_F-% _
a mg
= 6 — A
v - F 2] \
g mg
_ PN — PN
V+-h F-h
g mg J

The seven differential equations of motion (egs. (A7) to (Al3)) then
become

]
l
(aV]
|

at o)L/

a0 T B/t 12 T (A16)
A

-sin(w + @)cot i(imé h)

X_c1_Q=sin(w+cp)<_F_'f1>

>
e
Py

e

+
B~

[]

O

]

ae sin i mg

— ~
di ¥ - h
X ’d—e' = COS(LD + (P)( g >

J
For convenience, the differential equations for e and @ - 6 can be
written as follows:

— P 2 — A
PIEEN | e (%
e? é% (p - 6) = (X - 1)(F ;g§> - Y(i + %)(f gg§>

For a coasting path, i and o are constant, and Ap = A9 = angle
swept out by radius vector in the plane of motion (fig. 1(b)). For the
case of impulsive thrust in the plane of motion, f is constant and
Alw + ©) = 0; thus, Ap = -AQ.

(A17)

Fagu iy S .
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-\ ~
=1rVg = r29 6 ?dr
e = (rp/fry) -1 v a8
Vee //\
i1
v
\\
Condition on trajectory
Apogee w Perigee
Ascending node
L
Instantaneous ;,V plane
Y
§ 1
\\-Corresponding condition
hv on X-Y map
hvg GM
GM e
@
r
-( X

Apogee Q Perigee

hV; hz
e — —— = >

Gi G \\\

1 \\‘

L

Corresponding X-Y map

(a) Summary figure illustrating correspondence between trajectory
conditions and points in coordinate system of graphical method.

Figure 1. - Mapping of trajectory conditions into X-Y plane and the space orienta-
tion, showing major symbols used in report.
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Vv
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~
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i
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Q
~
X
L.§,§ plane

-~ ~ 3

Z h=cos i

2 X ﬁ =% sin i

-

X % = cos 9]

~ ~N

n-r =cos(w + @)

(b) Coordinate

Figure 1. - Concluded.
Plane and the space
report.

system used for space orientation.

Mapping of trajectory conditions into X-Y
orientation, showing major symbols used in
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Y
A
[
po—————— Y
@
¢ 1 -
Q X -1

Figure 2. - Geometry in X-Y plane of graphical method for
eccentricity, e, and true anomaly, .

Y
e, 1.5
P, 90°
1.0
o 45°
135
.5
q 180° 0°, 360°
Q
315
2259
270°
Pigure 3. - Polar coordinate system formed by trajectory variables

e and @

on X-Y plane of graphical method.

fady 1= o,
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270

Figure 4. - Two polar coordinates systems formed by trajectory
variables e, ¢ and hV/GM, Y superposed on X-Y plane of
graphical method.
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b -
¥ Y —
N nv Y, — Y
—, 1. e, 1. t—
GM’ 5 (P, 900 2 S L
) —
60 —
—
—
4 — 1
1 g 1 —
T, 90° —
30° —
60° —
.5 —
30° L
.5 —
Oo xll «" —‘-- O: —
3 ==== 100 = I vl
_500 =
—
-60° § 3 —
-90° ; —
330° —
N ~ :
— 4
300° —
A 270° :
Pt K] -
» X -
—
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X
0 1 2

Figure 5. - Detailed grid lines for trajectory variables in X-Y map
of graphical methed.
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rz/rl = Xl/Xz

Vo/V) = By/Ry

Perigee

Figure 6. - Example of coasting trajectory.

y for im- -~

Figure 7. - Example of entering X-Y map for case of in-
jecting satellite into orbit with e = 0.25 and
y = 10° at burnout; illustrating double-valued solu-
tion and also possibility of specifying impossible
conditions.

31
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6LV d

hiho /GMr
XXz

Xp
Xg

Figure 8. - Construction for impulsive thrust, planar case.
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hoAV
-~ TTGM
h AV

GM

| |
X3 Xp=Xp

X5 = x§ = X3%s

4+ 4

ov/aV]

Iines 1A and 2B are parallel

Figure 9. - Relation between forward and backward impulsive thrust.

Point 2 condition

Figure 10. - Trajectories resulting fro s
mirror image points A on map (figs. 8 and 9)
tion reversal.

Xz

giving
direc-
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66 = hl/GM (total component of impulse in horizontal plane)

iﬁ = hl/GM (total component of impulse in original plane of motion)
2

XA = XlX2

Figure 11, - Construction for impulsive thrust, nonplanar case.

o) H="T
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Y
O— 4
Q
Figure 12. - Construction used in approximation for
continuous thrust.
Approximate pulse-coast-etec.
P
—_ =
VA
A component I
of F dt |
n1r__ ) l
Zan N
| |
~J I l
A I B
o] 1 2 3 4 5
Figure 13. - Typical continucus thrust curve and approximation used in

graphical method.
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&
o

X] + Xp=2Xp

Figure 15. - Construction for impulsive thrust, almost cir-
cular orbits, e + 0.
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Figure 16. - Time lines on map; lines of constant

G2M2
K = -—h-g—' (t - tp).
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Y
2
1
Q
€] TN X
3 4
Figure 17. - Four conditions along a coasting path,
used to illustrate calculation of elapsed time.
Y

2,2
Xa/Xy = hg/ny

Figure 18. - Examples of transfers to new orbit.
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I

Figure 19. - Example of optimum AV, case 1; jmpulsive thrust

applied at definite position along orbit 1 so as to fix peri-

gee of orbit 2 at rp, 2.

XE/XE = rl/r*

Figure 20. - Example of optimum AV, case 2; impulsive thrust
applied at definite position along orbit 1 so as to reenter
at v = v*¥ when r = r*.

6LY-d
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Xp/Xy = hg/hi

Figure 21. -~ Example of optimum AV, case 3; impulsive
thrust applied at any position along orbit 1 so as to

change orbital parameters from ej;, h; to ey, hs.

41
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~
Y
>
=
1
I
o
G X
Xo/Xz = Tp/Ty
Figure 22. - Example of interplanetary trip; hyperbolic +
velocities reguired for minimum-energy transfer orbits.
Y
hoVy
GM
N q
A 2
e X
® 3
I h AV
< 1 —_ 2
L G I ryVy
| GM
2 >
-
Figure 23. - Example of interplanetary trip; tangential impulsive
thrust required for escape with specified hyperbolic velocity, 4

V,» starting from circular satellite orbit 1.
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(1) Angle (2,Q,l% = wy - Wy
2
(2) X5/%, = hy /by
(3) Points 0, 1lb, and 2b lie on straight line

€1
ez a

2b za

1b
\
Q /
\__//
Figure 24. - Illustration of conditions for intersection and

tangency of two orbits. Points la and Za are conditions on
orbits 1 and 2 at intersection; points lb and Zb are con-
ditions on orbits 1 and 2 at tangency.
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hy AV,

GM

(L) Angle (2a,Q,1) + angle (3,Q,2b) = Wz - W)

2, 2
(2) XpaX3/X1Xpy = hz/hy
(3) Points O, 1, and 2a lie on straight line
(4) Points O, 2b, and 3 lie on straight line

€1

€2

2a

Zb

Figure 25. - Example of a rendezvous problem where transfer orbit 2

is tangent to both initial orbit 1 and final orbit 3.

6LT-H
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(1) Angle (2a,Q,1) + angle (3,Q,2b) = wz - ]
252
(2) XpaXz/X1Xpy = hz/hy

2b =

Figure 26. - Example of rendezvous problem where orbital param-
eters ey, hy, w; are changed to ez, hz, wz with two im-
pulsive thrusts so that total AV 1s a minimum.
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T - V plane

(ol
1)
A
e
~
r
. % (out of paper)
A
9 dF
8
[
r
h=rXV
-
6-hx?
$ =08
Figure 27. - Instantaneous plane of motion.

NASA - Langley Field, Va. F-479




